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Nonradial vibrations of a star modeled by a heavy spherical mass of an elastic solid

S.I. Bastrukov
Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research, 141980 Dubna, Russia
(Received 16 March 1995)

The continuum dynamics of self-gravitating elastic substance is modeled by the closed system of
elastodynamic equations and Poisson’s equation of the Newtonian gravity. Instead of the Lamé’s
equation, which describes small-amplitude vibrations of an isotropic elastic solid, the equations
of the elastodynamics are introduced as a natural extension of the hydrodynamic equations: the
continuity equation for the bulk density and Euler’s equation for the velocity field are supplemented
by the equation for the tensor of elastic stresses. The emphasis is placed on the study of nonradial
spheroidal and torsional gravitation-elastic vibrations of a star modeled by a heavy spherical mass
of a perfectly elastic substance. It is found that eigenfrequencies of spheroidal vibrations are given
by w? = wi[2(3L + 1)(L — 1)/(2L + 1)]; the torsional gravitation-elastic modes are found to be
w? = w4 (L — 1), where w% = 47 G po/3 is the basic frequency for the star with uniform equilibrium
density po and where G denotes the gravitational constant. To reveal similarities and differences
between the seismology of stars with elastodynamic and fluid-dynamic properties of medium, the
vibrational dynamics of a self-gravitating elastic globe is considered in juxtaposition with Kelvin’s
theory for the small-amplitude oscillations of a heavy spherical drop of an incompressible inviscid
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liquid.

PACS number(s): 03.40.Dz, 04.40.—b, 43.20.+g, 62.30.+d

I. INTRODUCTION

Studies of nonradial vibrations of variable stars have
often relied on the concept of a liquid stellar substance
governed by the equations of hydrodynamics and New-
tonian gravity [1,2]. The stellar matter is considered to
be in the liquid aggregate state mainly in stars from the
main sequence. The method underlying fluid dynamical
calculation of nonradial eigenmodes of liquid stars is the
Kelvin theory of spheroidal vibrations of a homogeneous
spherical heavy mass of an incompressible inviscid liquid
[3,4]. In the meantime, the vibrational dynamics of stars
whose continuum possesses the properties of an elastic
solid is less studied. In Ref. [5] arguments have been
given that the white dwarfs represent a class of compact
objects [6] whose seismology displays elasticlike behav-
ior of highly compressed stellar matter. In Ref. [7], it is
emphasized that the variability of white dwarfs is caused
primarily by their nonradial pulsations.

The eigenmodes of an elastic self-gravitating object
may be investigated on the basis of Lamé’s equation,
which describes the small-amplitude vibrations of an
isotropic elastic solid. This approach is widely used
in the terristial seismology when analyzing the surface
Rayleigh’s waves. The Lamé’s equation is particularly
efficient in the study of radial eigenmodes that are the
result of excitation of standing spherical waves. These
modes are specified by the nodal structure of the displace-
ment field. In present paper, a somewhat different math-
ematical treatment of the dynamics of self-gravitating
elastic substance is considered which has been found [8]
to be most effective in the search for eigenmodes of the
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nonradial, long wavelength vibrations of an elastic sub-
stance. The characteristic feature of nonradial vibrations
is that the displacement field of fluctuating matter not
contain nodal points in the spherical volume. The gov-
erning equations of the elastodynamics of self-gravitating
matter are introduced in Sec. II. These equations have
some features in common with the equations of hydrody-
namics and are known as equations of the 13 moment’s
approximation of the continuum theory [9]. The empha-
sis is placed on the study of the nonradial pulsations of
a star modeled by a homogeneous self-gravitating spher-
ical mass of an incompressible continuous medium with
an isotropic distribution of stresses in the equilibrium
state. In Sec. III, by making use of the Rayleigh vari-
ation principle the Hamiltonian is derived for nonradial
gravitation-elastic vibrations of a heavy elastic sphere.
The eigenfrequencies of spheroidal pulsations are studied
in Sec. IV. The problem of spheroidal oscillations has
briefly been studied in Ref. [10] within the framework of
the Cowling approximation: In this paper, we present
a detailed and highly extended analysis of spheroidal
gravitation-elastic modes. It should be stressed that the
model of a homogeneous spherical distribution of incom-
pressible substance cannot even approximately be con-
sidered as an adequate model of the structure of any
known class of stars. The principal attractive feature
of this model is that it allows one to carry out all calcu-
lations analytically and to elucidate the major dynamical
differences in the behavior of self-gravitating continuum
controlled by hydrodynamic equations of an inviscid lig-
uid and by elastodynamic equations of a perfectly elastic
solid. For the purpose of comparison of the hydrody-
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namical and elastodynamical models of a heavy contin-
uous medium, in Sec. IV A a brief outline is given of
Kelvin’s model for nonradial spheroidal vibrations of a
heavy drop of an inviscid incompressible liquid. In Sec.
V the eigenmodes of torsional gravitation-elastic vibra-
tions are derived. Section VI contains a short summary
of the analysis performed.

II. ELASTODYNAMIC EQUATIONS FOR
SELF-GRAVITATING CONTINUUM

The mathematical treatment of the continuum dynam-
ics of matter with properties of an elastic solid may be
based on the following equations:

dp aV;
— =0 2.1
7 +pami , (2.1)
dVi OPs  OU
avi —0 2
Pat Y oz, Poz 0 (22)
dP,; av; av; v
iy p Vi p OV g 2.3
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where d/dt = 8/8t+ V-V is the total (convective) deriva-
tive, p stands for the mass density, V; is the field of ve-
locity, P;; is the tensor of elastic stresses, and U is the
gravitational potential. Equation (2.1) is the continu-
ity equation, Eq. (2.2) describes the flow pattern, and
Eq. (2.3) controls the dynamics of internal stresses. The
incorporation of this latter equation into the dynamical
description of matter actually implies the identification of
its behavior with that of ideal elastic continuum. Indeed,
the nondiagonal structure of the elastic stress tensor pro-
vides the possibility that an external perturbation may
produce an anisotropic distortion in the distribution of
internal stresses. As shown in Ref. [8] Egs. (2.1)-(2.3)
can be reduced to Lamé’s equation describing the vibra-
tions of a perfectly elastic solid, the characteristic feature
of which is the ability to support both longitudinal and
transverse undamped vibrations. In an inviscid liquid,
the perturbation propagates in the form of solely longi-
tudinal vibrations, that is, without spoiling the isotropy
of internal stresses. This is the main reason why the
continuum model based on the above equations is con-
sidered to be the model of an elastic medium. One ad-
vantage of these equations is that they have proven to be
effective in obtaining the eigenmodes of low-frequency
(long wavelength, essentially nonradial) vibrations of a
perfectly elastic globe, whereas the approach based on
Lamé’s equation does not permit a unique solution of this
problem. In the continuum theory Eqs. (2.1)-(2.3) are
introduced as extensions of the fluid-dynamic equations
in the sense that two basic equations of hydrodynam-
ics — the continuity equation (2.1) for the bulk density
and the Euler equation (2.2) for the velocity field — are
supplemented by the equation for the tensor of elastic
stresses (2.3) [9]. In view of this Egs. (2.1)-(2.3) below
are referred to as the equations of elastodynamics.

In this paper we consider the dynamics of elastic mat-
ter in the presence of Newtonian gravitation, that is, as-
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suming that equilibrium and large scale motions of mat-
ter are dominated by forces of self-gravity. This means
that the potential U obeys Poisson’s equation

AU = 4nGp , (2.4)

where G is the gravitation constant. As a result we arrive
at the closed system of Egs. (2.1)-(2.4) governing the
dynamics of a self-gravitating elastic continuum.

IIT. HAMILTONIAN OF NONRADIAL
GRAVITATION-ELASTIC VIBRATIONS OF
A HEAVY SPHERICAL MASS OF
AN ISOTROPIC ELASTIC SOLID

The equilibrium distribution of gravity inside a homo-
geneous star modeled by a heavy spherical mass of an
isotropic matter is given by the well known solution of
Eq. (2.4):

2

Uin = -371 G po(r? — 3R?), r< R, (3.1)
4nR3

Ue = — gr G po, r> R, (3.2)

where R is the radius of the star and index “0” stands
for the characteristics of the star equilibrium. Having
presumed that the equilibrium distribution of internal
stresses is isotropic, we can write

Plg (7") - Po(’l‘)(sij. (3.3)
The spatial distribution of static stresses in the star inte-
rior can be determined from the equation of equilibrium
with the boundary condition corresponding to the free
surface

VPy(r) = —po VU (r), Py(r) R 0, (3.4)
whose solution is well known:
Py = %” G p2(R® — r?). (3.5)

The above-defined static characteristics of a star with
uniform density and isotropic distribution of equilibrium
stresses are the same for two types of stellar matter: in-
viscid liquid and isotropic elastic solid. The main pur-
pose of our further analysis is to reveal the dynamical
difference between self-gravitating spherical masses in
which the small-amplitude vibrations of matter are con-
trolled by hydrodynamic equations (2.1)—(2.2) and those
in which continuum is governed by equations of elasto-
dynamics (2.1)—(2.3).

To compute the fundamental frequencies of normal vi-
brations, we take advantage of the Rayleigh variational
principle. In what follows we assume that perturba-
tion does not lead to the fluctuations in the density, i.e.,
ép = 0, and the flow of mass in an equilibrium state is
absent Vo = 0. Making use of the standard procedure of
linearization, Eqgs. (2.1)—(2.4) are reduced to
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Equations (3.6) and (3.7) have some features in common
with the equations for small-amplitude fluctuations in an
incompressible inviscid liquid [see below, Eqgs. (4.18) and
(4.19)].

Taking the scalar product of (3.7) with §V; and inte-
grating over the star volume, we arrive at the equation
of energy balance:

0 2
Bt/ =podVedr —

86V

’L

+ }{ (00 SUSV; + 6P;; 6V;] dos = 0, (3.10)
S

which determines the conservation of energy in the pro-
cess of oscillations. It is convenient to represent the ve-
locity field of the perturbed flow §V; and the fluctuation
in the potential of self-gravity 6U in the separable form

8Vi(r,t) = EF(r)ar(t),  8U(x,t) = ¢L(r)or(t),
(3.11)

where L is the multipole order of an oscillation. The
normal coordinate af(t) specifies the time dependence
of fluctuating variables and &% (r) represents the field
of instantaneous displacements. Substituting (3.11) into
(3.8), one finds that fluctuations in stresses are deter-
mined by the tensor

L(p F) L
§P;j(r,t) = —[ Po(r) (8583:(3 ) f?m, )>

+6i; (€k (r )apo(r)ﬂaL(t)-

In view of the above separation of the spatial and time
dependence of fluctuating variables, the substitution of
(3.11) and (3.12) in the equation of energy balance (3.10)
allows one to reduce the latter equation to the Hamilto-
nian of normal vibrations,

Mpai n Kro?
2 2 7

(3.12)

H= (3.13)

which is an integral of motion. The parameters of inertia
M, and stiffness Ky are given by

Mg = / po&i V& dr, (3.14)
v

The first term in Eq. (3.15) explicitly displays the contri-
bution of energy of elastic anisotropic deformations to the
total potential energy of nonradial oscillations. Equation
(3.15) for the stiffness K has been obtained under the
condition Py(R) = 0. Thus, to determine the fundamen-
tal frequencies w% = Krp/Mpy of nonradial gravitation-
elastic oscillations of a star, it is necessary to calculate
the spatial distributions of a fluctuating field of the ve-
locity 4V; (more exactly, of the field of displacements £F)
and of fluctuations in the gravity potential U (precisely,
the function ¢L).

IV. SPHEROIDAL GRAVITATION-ELASTIC
MODES

Spheroidal oscillations are defined as those under
which an arbitrary spherical surface in the volume of a
star transforms into a harmonic spheroid whose surface
is described by the equation

r'(t) = r[1 + ar(t)Pr(cos 8)], (4.1)

where r is the radius of the unperturbed spherical sur-
face; Pr(cosf) is the Legendre polynomial of order L
(hereafter all the calculations are performed in the sys-
tem with a fixed polar axis). Spheroidal oscillations are
accompanied by an irrotational vector field of instanta-
neous displacements &~ (r) = grad ¥L. Inserting this field
into the equation of incompressibility (3.6), one has

Ayt =0, gt

Equation (4.2) can be considered as a long-wavelength
limit of the Helmholtz equation for a spherical standing
wave Ay + k2 = 0. Indeed, in the limit of long wave-
lengths A — oo, the wave number &k = 2w/\ — 0, and
the Helmholtz equation turns into the vector equation of
Laplace (4.2). An arbitrary constant Ay, is fixed by the
condition

= AprEPr(cosb). (4.2)

(SV,.(T") = 7‘”|7"=R’,(r=R)s (43)

which expresses the compatibility of fluctuations of the
radial component of the velocity field with the speed of
distortions of the surface given by Eq. (4.1). The dis-
placement field for spheroidal oscillations is finally writ-
ten as follows:

1 0

ek = LRL=? o, —7rLPr(cosh). (4.4)
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The parameter of inertia My, Eq. (3.14), computed with
the field (4.4) is given by

47Tp0R5

M= 1or+1)

(4.5)

The general solutions of the Laplace equation (3.9) for
the field of the self-gravity éU are

sU™ = By rL Pr(cos8)ay,
= Cpr~ (L) Py (cosf)ay,

r< R,
r > R.

(4.6)

sUe® (4.7)

The arbitrary constants By, and Cy, are fixed by the stan-
dard boundary conditions

U(t;'n(,rl) + (SUin("'l) — Ug:t(,r!) + (sUez(rl)lr'zR':(”‘:R)’

(4.8)
BUSM(r') | 9U(r') _ BU=(r')
or! or’ o or
6T (r')
+ or’ r’:R’,(r:R). (4.9)

Inserting (4.6) and (4.7) into (4.8) and (4.9) and retaining
the terms linear in aj,, one obtains

i 4m Gpo 1
[T 6 4.1
U RI=2 (2L+1)r Pr(cosf)ay, (4.10)
and
L+3
SUe® = —47T GpoRt r—(L+1)PL(cos())aL (4.11)

(2L +1)

It follows from (4.11) that function ¢* on the star surface
is given by

4 Gp0R2

¥ =—ar+n

Pr(cos0). (4.12)

A calculation of the volume part of the stiffness param-
eter (3.15) yields

1 ok o¢f 32 , s (L—1)
1 = Gpi RP—Z—L_
2 /VP" (amj 5k ) T3 LEL+1)

(4.13)

For the surface integral in Eq. (3.15) one obtains
OP, 32 (L-1)
L - L o L ;o= — 57
§ (oo - 50 ) ek o = Znra it oL
(4.14)

Finally, the stiffness coefficient of spheroidal gravitation-
elastic pulsations is expressed as follows:

3L +1)(L — 1)

2
ICL=§——7r2Gp(2) R5(

3 L2L + 1)2 (4.15)

From (4.15) it follows that monopole and dipole modes
cannot exist. The excitation of monopole (purely radial
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at L = 0) pulsations is impossible due to assumption
that the density is not affected by perturbation. When
the dipole field of velocity is disturbed, only motion of the
center-of-mass of a star can be expected, without change
of its internal state, since the stiffness coefficient at L = 1
vanishes.

The eigenmodes of nonradial spheroidal gravitation-
elastic pulsations are uniquely determined by the fre-
quencies

2 2L +1)(L —1)

= .16
Ws wWa (ZL + 1) ’ (4 )

with
wi = ngpo. (4.17)

Formula (4.16) is one of the basic consequences of the
model in question. It shows that the eigenfrequency of
spheroidal gravitation-elastic modes does not depend on
the star radius but only on the density of homogeneous
incompressible stellar continuum.

Comparison with the Kelvin modes

To ascertain the difference in the dynamics of a ho-
mogeneous elastic and liquid stars we present a short
derivation of the Kelvin eigenmodes by using the varia-
tional principle expounded above.

The hydrodynamics of inviscid liquid assumes that dis-
turbance of the equilibrium state does not destroy the
isotropy in the distribution of static internal stains: P;; =
(Po + 0P)d;j. This is the main feature distinguishing an
inviscid liquid from a perfectly elastic solid. Propaga-
tion of disturbance in the elastic substance, as was shown
above, is accompanied by the spoiling the isotropy of the
equilibrium distribution of stresses: P;; = Pyd;; + 0 P;j,
with 0 P;; given by Eq. (3.12).

In the linear approximation, the evolution of the dis-
turbances in an inviscid self-gravitating incompressible
liquid is described by the equations

6V,
= 4.1
o8V; OOP o8U
P + G Py = 0, (4.19)
ASU = 0. (4.20)

Taking the scalar product of the linearized Euler equation
(4.19) with V; and integrating over the volume of star, we
again arrive at the equation of energy balance:

7]

8t / PoO—— 6V dr + f (6P + pOJU)tSV,dm = 0. (4.21)
S

Fluctuations in the velocity §V; and in the potential of
self-gravity 6U are calculated in the same way as in the
previous section. The only unknown variable is the vari-
ation of pressure 6 P. Acting by the divergence operator
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on Eq. (4.19) and using Egs. (4.18) and (4.20), one
finds that § P obeys Laplace’s equation together with the
condition for vanishing pressure on the pulsating surface:

ASP =0, By(r') +6P(r") = O =r/,(r=R)- (4.22)
The equilibrium pressure P, is defined by the expression

(3.5). The solution to Eq. (4.22) is of the form

4w

6P = p*(r) a(¢), .

pL(r) 2 GpOTLPL

(4.23)

Substituting (3.11), (4.12), and (4.23) into (4.21) we ar-
rive at the standard equation of normal oscillations
Mp&2 + Kpol =0. (4.24)

The mass parameter My, is defined by the expression
(4.5) and the stiffness parameter equals

32 L—-1
Kp= f; (p" + poo™) £l do; = 37 2Gp, Rsﬁ

(4.25)

As aresult we arrive at Kelvin’s formula for eigenfrequen-
cies of nonradial vibrations of a heavy spherical mass of
an inviscid incompressible liquid:

K _ 2 2LL—1)

WL =W —or (4.26)

It is remarkable that spheroidal modes of a self-
gravitating elastic sphere (4.16) have many features in
common with Kelvin modes (4.26). In both cases the
eigenmodes of nonradial spheroidal pulsations solely de-
pend on the equilibrium density and the lowest mode is
the quadrupole one. However, the ratio between these
frequencies obeys the inequality

w?  (3L+1)

8

WEP = L

>1, L>2, (4.27)

from which it follows that w, — ﬁw{f when L — oco.
So, for the same L and pg, the frequencies of spheroidal
oscillations of a heavy elastic sphere are always higher
than those for a self-gravitating spherical mass of inviscid
liquid.

V. TORSIONAL GRAVITATION-ELASTIC
MODES

The elasticity of stellar medium allows one to consider
shear torsional gravitation-elastic oscillations of a homo-
geneous star. This kind of vibration cannot be excited in
the liquid star [4], because shear oscillations are due to
the appearance of anisotropic distortions in the distribu-
tion of internal stresses. The torsional long-wavelength
oscillations are described by the toroidal field of velocity

(8]:
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6V = Aprotrrl Pr(cos0)ay(t) = [r x Q(x,t)], (5.1)
where

Q(r,t) = —Ar grad r” Pp(cos 8)éy(t) (5.2)

is the frequency of local (nonrigid) rotational oscillations.
In this case the normal coordinate ar () represents the
azimuthal angle of torsion of the flow around the polar
axis. The arbitrary constant A; may be fixed by the
following boundary condition:

6V = [r x Q] |r=r, (5.3)
where Q¢ = grad Pr(cos@)ar(t), which yields Ay =
R~L+! The field of instantaneous torsional displace-
ments is given by

&= RL srotrr LPr(cosb). (5.4)
Inserting (5.4) into (3.14), we obtain
ML = 47I'p0R5 L(L + 1) (5.5)

(2L + 1)(2L + 3)°

This is the moment of inertia of rotational oscillations.
When L = 1, the vorticity field 2 becomes uniform and
the mass parameter M; coincides with the moment of
inertia of a hard sphere J = M; = (2/5)MR2. The
stiffness of torsional gravitation-elastic vibrations equals
167r s L(L—1)(L+1)
Kp=—3-GpR (2L +1)(2L + 3)°

(5.6)

It worth noticing that the surface integral in the gen-
eral expression for the stiffness (3.15) vanishes. Conse-
quently, surface fluctuations in the gravity potential do
not contribute to the restoring force of shear oscillations.
The latter means that the torsional vibrations of a star
are of the volume origin. From (5.6) it follows that the
dipole torsional mode, as in the case of spheroidal os-
cillations, is not an eigenmode of oscillator Hamiltonian
(3.13). When the toroidal dipole field of displacements
is excited, the restoring force does not arise, and this
motion corresponds to rigid rotations of a star without
changing the intrinsic state.

The homogeneous model under consideration leads
to the following expression for frequencies of torsional
gravitation-elastic modes:

w? =wZ(L-1), (5.7)

where wg is the fundamental frequency defined by (4.17).

VI. SUMMARY

In this paper an elastodynamical model is explored of
a self-gravitating continuum based on Egs. (2.1)—(2.4).
The major purpose was to construct equations that are
able to reflect the basic property of dynamical response
of a heavy spherical mass of perfectly elastic matter, that
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is, spheroidal (longitudinal) and torsional (transverse) vi-
brations (as compared to a heavy nonviscous liquid drop,
which may execute solely spheroidal vibrations). To re-
veal the difference between the elastic and liquid behav-
iors of an isotropic stellar matter, the dynamics of vibra-
tions has been analyzed for those perturbations that do
not lead to fluctuations in density. As a representative
example of the method, the nonradial spheroidal and tor-
sional pulsations have been studied of a star in the model
of homogeneous spherical mass of a self-gravitating mat-
ter governed by equations of elastodynamics. The in-
herent feature of nonradial oscillations is that the bulk
density of elastic matter remains unchanged, and in this
respect the elastic substance under consideration bears a
resemblance to incompressible liquid. The eigenfrequen-
cies of gravitation-elastic modes have been derived in an-
alytic form analogous to that for the Kelvin modes for a
heavy spherical mass of an inviscid incompressible liquid.
The frequency of spheroidal gravitation-elastic vibrations
of a self-gravitating elastic globe, Eq. (4.16), is found to
be always higher in absolute value than the Kelvin fre-
quency of nonradial vibrations of a heavy liquid drop,
(4.26), at equal densities of stellar continuum. This dif-
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ference is of a purely dynamical origin: the restoring force
in the pulsating spherical mass of a heavy incompressible
nonviscous liquid is determined only by the surface fluc-
tuations in the gravity and pressure. The restoring force
of spheroidal oscillations of a heavy elastic globe is dom-
inated by two effects of volume and surface origin that
act constructively. The first of these is associated with
anisotropic distortions of internal stresses caused by self-
gravitation in the star volume. The physical content of
the surface restoring force is similar to that for a heavy
drop of inviscid liquid. The elastodynamical method in
question allows one to obtain an analytic expression for
the eigenfrequency of torsional (essentially transverse)
gravitation-elastic oscillations, Eq. (5.7). These modes
are unique to the star with elastic continuum. In the stars
whose medium is governed by hydrodynamical equations,
excitation of shear modes cannot be expected.

As was mentioned above, nowadays it is believed that
some observable features of white dwarfs may be under-
stood if one accepts that a stellar continuum displays
elasticlike behavior. Therefore one may hope that the
elastodynamical method considered may be useful in the
study of seismology of highly condensed stars.
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